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We studied the kinetic roughening dynamics of drying wet paper. The configurations of dry paper sheets are
found to be self-similar, rater than self-affine. Accordingly, the paper roughening dynamics corresponds to the
new class of anomalous kinetic roughening �J. J. Ramasco, J. M. López, and M. A. Rodríguez, Phys. Rev. Lett.
84, 2199 �2000��, characterized by the equal local and global roughness exponents �=�=1 and the dynamic
exponent z=1.0±0.2, whereas the spectral roughness exponent �S�1 is determined by the long-range corre-
lations characterized by the fractal dimension D of crumpled sheet.
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The kinetic roughening of surfaces has played the role of
a paradigm in nonequilibrium statistical physics for the past
two decades, with applications ranging from growth prob-
lems to fracture phenomena �1�. Typically, an initially flat
d-dimensional surface z�t ,x�� roughens if it is driven by some
external noise. The roughening dynamics is commonly char-
acterized by the time dependent global width of interface

W�L , t�= ��z�x� , t�− z̄�2�1/2, where the overbar denotes the av-
erage over all x� in a system of size L and the brackets denote
the average over different realizations �1,2�.

It was found that in many cases the roughening dynamics
exhibits scaling invariance, i.e., their behavior does not
change under rescaling of space and time combined with an
appropriate rescaling of the observables and the control pa-
rameters �1,2�. Specifically, in the absence of any character-
istic length in the system except L, the roughening dynamics
satisfies the celebrated Family-Vicsek scaling ansatz �3�,

W�L,t� � t�f�L/��t�� , �1�

where �� t�/� is the horizontal correlation length, �, �, and
z=� /� are the so-called growth, global roughness, and dy-
namic exponents, respectively; and the scaling function
f�y� behaves as f �y� if y�1 and it is a constant when
y	1. The scaling behavior of the local fluctuations of the
surface is, however, generally characterized by different
scaling exponents. According to the generic dynamic
scaling ansatz suggested in �4�, the local surface width,
w�
 , t�= ���z�x� , t�− �z�
�2�
�1/2, where �. . .�
 denotes an aver-
age over x in windows of size 
, scales as

w�
,t� � t�f l�
/��t�� , �2�

where the scaling function behaves as f �y� if y�1 and it is
a constant when y	1. The local roughness exponent � is
generally less or equal to �. Kinetic roughening character-
ized by ��� was called anomalous roughening in the litera-
ture �1,4�. Furthermore, to classify the scaling dynamics
within a framework of generic scaling theory, we need to
know the scaling behavior of the structure factor or power
spectrum of surface, S�k�= �Z�k�Z�−k��, where Z�k� is the

Fourier transform of z�x�. In saturation �t→� ,�→L� the
structure factor of rough d-dimensional surface behaves as

S�L,k� � k−�2�S+d�L2��−�S�, �3�

where �S is the spectral roughness exponent �4�.
Accordingly, the Family-Vicsek scaling is associated with
�S=�=�. The super-rough surfaces are characterized by
�S=���=1, whereas the intrinsically anomalous roughness
is characterized by �S=��� �4,5�. Furthermore, Ramasco et
al. �4� has predicted the existence of a new class of anoma-
lous dynamic scaling characterized by �S���=1, which
was observed in numerical simulations of one-dimensional
Sneppen model of self-organized depinning �6�. However, as
far as we know, this type of kinetic roughening was not
observed in experiments �7�.

Many studies of roughening dynamics were performed
with the use of a paper as a model random medium �see, for
example, Refs. �2,8�, and references therein�. An interesting
example of kinetic roughening is a crumpling of a paper
sheet when wet paper dries �9�. As moisture is removed,
paper tends to shrink �10�. Dried paper does not reveal any
characteristic length scale; rather smaller “mountains” appear
inside larger ones up to the fiber scale. The mechanisms of
paper roughening due to drying are discussed in details in
Refs. �8–11�. The only known to us model of kinetic rough-
ening of drying wet paper suggested in Ref. �9� predicts a
trivial result �S=�=�=1, which was not supported experi-
mentally. In this work we performed an experimental study
of roughening dynamics of drying wet paper.

We used the square sheets of different sizes L of three
kinds of Filtro paper with open, medium, and closed
porosity �12�. The main properties of these papers are
given in Table I. The sheet size was varied from
L0=2 cm to Lmax=50 cm with the relation L=�L0 for scal-
ing factors �=2,2.5,3 ,5 ,10,15,20,25.

All samples were placed in a bath of distilled water for
10 min. After that, each sheet was removed from the bath
and placed on a blotter to remove dripping water and then
positioned on the stainless steel screen and allowed to free
drain until no changes in the sheet shape were observed.
Thirty samples of each size of each paper were tested �13�.
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The drying paper sheets were observed to pass through a
series of discrete visual stages. When first removed from the
bath, the sample is flooded �stage 1�. When the sample is
placed on the drying screen, the surface appears wet. At the
second stage �t1� t� t2�, the overall surface moisture de-
creases fairly quickly as the flooded water evaporates from
the surface and the surface fibers begin to shrink up. At
the third stage �t2� t� tS�, the sheet of paper roughens
continuously until the roughness saturates, and at the
final stage �tS� t� tF� only small changes in paper
roughness are observed as the sheet achieves its final shape
�see top insert of Fig. 1�a�. For times t t2, we measured
the maximal height of crumpling sheets, H�L , t�
=maxx��L�L z�t ,x�−minx��L�L z�t ,x�, which is assumed to
satisfy the Family-Vicsek ansatz �1�. Accordingly, we find
that at the third stage. t2� t� tS, the sheet height increases
with time, such that 
H�L ,��=H�L ,��−H�L ,0� behaves as


H�L,�� � �f�L/�� , �4�

where �= t− t2 �14�. The data collapse for sheets of different
with are shown in Fig. 2�a�. We also found that the heights of
the final sheet shapes at �F= tF− t2 scale with L as

H* = H�L,�F� − h = kL , �5�

for all papers tested �see Fig. 2�b��, where h and k are con-
stants �see Table I�. This means that the roughness of all
crumpled dry papers is characterized by �=1.00±0.02,
�=1.00±0.05, and so z=� /�=1.

TABLE I. Physical and mechanical properties of papers ��A, E, �, and �y are the area density, Young
modulus, Poisson ratio, and yield stress, respectively; subscripts denote the direction of tension test: L, in the
machine direction of paper, and T, across the machine direction� and characteristic parameters of kinetic
roughening of drying wet papers and 1D surface formed in the Sneppen model of self-organized depinning.

Filtro paper 1D Sneppen modela

Open
porosity

Medium
porosity

Closed
porosity

Random
segments

Identical
segments

Thickness
�mm�

0.32±0.06 0.25±0.05 0.21±0.04

�A �g/m2� 128.4±3.3 103.4±3.1 102.4±2.8

Porosity �%�b 73.2 72.4 67.5

EL �MPa� 1115±60 1570±170 2020±280

ET �MPa� 606±50 740±40 750±90

�L 0.45±0.07 0.63±0.05 0.75±0.06

�T 0.25±0.05 0.23±0.05 0.19±0.06

�yL �MPa� 12.1±0.9 16±1 22±5

�yT �Mpa� 6.6±0.7 7.8±0.7 8±1

h �mm� 1.3±0.2 2.2±0.2 2.2±0.2

k 0.65±0.1 0.95±0.1 1.3±0.2

� 1.00±0.06 1.00±0.05 1.00±0.04 1c 1c

� 1.00±002 1.00±0.02 1.00±0.02 1c 1c

� 0.98±005 0.99±0.06 0.99±0.04 1c 1c

�S 1.25±0.06 1.15±0.05 1.09±0.04 1.35±0.03c 1.5c

DD 1.24±0.02 1.13±0.02 1.09±0.01 1.35±0.02 1.5±0.01

DB 1.25±0.02 1.14±0.02 1.08±0.01 1.35±0.02 1.5±0.01

DPA 1.24±0.02 1.12±0.02 1.1±0.01 — —

DS 2.24 2.13 2.09 — —

aReference �4�.
bReference �12�.
cReference �3�.

FIG. 1. �a� Profile of crumpled Filtro paper with closed porosity
�inserts show photograph of crumpled sheet �top� and the closed
contour profile presentation �bottom� used for perimeter-area mea-
surements� and �b� its digitized single-valued presentation.
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Further, the one-dimensional �1D� profiles �see Fig. 1�a��
of dry crumpled sheets of size L150 mm were obtained
with help the one-dimensional laser profilometry. Only a
small number of overhangs were observed in obtained pro-
files, which were neglected in order to represent the profiles
by single-valued functions z�x� �see Fig. 1�b��. Accordingly,
we found the spectral �S and the local roughness � exponents
from the scaling relations �3� and w�
�, respectively �see
Figs. 2�c� and 2�d��. We note that �=1.0±0.03 for all papers,
whereas the spectral exponents were found to be different for
different papers �see Table I�. So the saturated roughness of
dry paper sheets is characterized by

�S � � = � = 1, �6�

i.e., the sheet roughness is consistent with a new class of
kinetic roughening suggested in Refs. �4,15�. This result dif-
fers from the prediction of the model of crumpling of dried
paper suggested in Ref. �9�, as well as from the results of
experimental studies of the flattening of randomly folded
sheets �see Refs. �16,17��. In experiments with mechanically
crumpled papers, it was found that unfolded sheets are self-
affine, i.e., the sheet roughness is invariant under affine
transformation x�→�x ,z→��z with �=0.71±0.01 �Ref. �16��
and �=0.88±0.03 �Ref. �17��. In contrast to this, we found
that crumpled dry sheets are invariant under the similarity
transformation

x� → �x,z → �z , �7�

and the roughening dynamics �4� is self-similar, i.e., t→�t�.
It is interesting to note that the wrinkling of plastically de-
formed sheets is also self-similar �18�.

The nontrivial values of �S�1 indicate the long-range
correlations in the paper roughness �19�. Generally, self-
similar shapes are characterized by the nontrivial fractal di-
mension D, rater than by the roughness exponent �20�. Ac-
cordingly, we determined the fractal dimension of each
original profile by the box-counting �Fig. 3�a�, divider �Fig.
3�b��, and perimeter-area �Fig. 3�c� �Ref. �21��� methods with
the help of commercial BENOIT 1.3 software �22��. We found
that three methods give an almost the same value of fractal

FIG. 2. �a� Data collapse for sheet heights 
H�L ,�� and �b�
graphs of the sheet roughness amplitude, H*, vs scaling factor of
sheet size �; �c� Data collapse for size dependent structure factor �3�
of sheet profiles �in arbitrary units� and �d� Log-log graphs of local
profile roughness w�
� vs window size 
 for Filtro papers with
closed �1�, medium �2�, and open �3� porosity.

FIG. 3. Log-log graphs of �a� number of boxes covered sheet
profile �NBOX�
�� vs box size �
�; �b� number of dividers along
profile �NDIV�
�� vs divider size; and �c� area �S� versus perimeter
�P� of closed contours composed from crumpled sheet profiles �see
inset in Fig. 1�b��. Points are experimental data, and straight lines
are data fitting with the scaling relations NBOX�
−DB, NDIV�
−DD,
and S� P2/DPA for graphs in panels �a�, �b�, and �c� respectively. The
numbers in all panel correspond to sheets of Filtro papers �1–3�
with open �1�, medium �2�, and closed �3� porosity and to interfaces
formed in one-dimensional Sneppen model of self-organized depin-
ning �4� and �5� in the cases of interfaces formed by facets with
constant slope ±1 �4� and by a finite number of identical segments
�5�. Notice that all graphs are shifted along ordinate for clarity.
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dimension D=DB=DD=DPA �see Table I; notice that the
fractal dimensions DB, DD, and DPA are reoffered dimensions
obtained by the box-counting and divider methods and via
the perimeter-area relation, respectively�, as is expected for
self-similar fractals �23�. Hence, the surface fractal dimen-
sion is assumed to be DS=D+1 �see Ref. �24� and Table I�.
Notice that DS is found to be different for different kinds of
paper �see also Refs. �12,25��.

We also note the numerical coincidence between the frac-
tal dimension D and the spectral roughness exponent �S of
self-similar profiles of crumpled sheets �see Table I�. To
verify the physical significance of this coincidence, we per-
formed numerical study of the one-dimensional Sneppen
model of self-organized depinning �model A�. Ramasco et al.
�4� have found that this model exhibits a type of anomalous
roughening, characterized by �S��=�=�=z=1, where
�S=1.5 in the case of a faceted interface formed by a finite
number of identical segments, and �S=1.35 if the interface is
formed by facets with constant slope ±1 �Ref. �4��. In this

work we determine the fractal dimension for these two types
of faceted interfaces �see Fig. 3�a� and 3�b�, and Table I�.
Accordingly, we found again that numerically �S=D �Ref.
�26��.

In summary, we present an experimental observation of
anomalous kinetic roughening of the class suggested theo-
retically in Ref. �4�. Moreover, we have show that in reported
experiments, as well as in numerical simulations with the
Sneppen model, this class of anomalous roughening is asso-
ciated with self-similar scaling dynamics. The open ques-
tions are �1� Is the equality �S=D valid for all self-similar
interfaces? And if so, why? �2� Is it possible the scaling
characterized by �S����=1 and/or z�1, or this later type
of kinetic roughening is always self-similar?
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